

Plant Archives

Journal homepage: http://www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.206

GW 547 A HIGH YIELDING, MULTIPLE DISEASE RESISTANT AND BIOFORTIFIED BREAD WHEAT VARIETY FOR CENTRAL INDIA

C.R. Patel*, S.K. Patel, J.M. Patel, A.M. Patel, A.S. Patel, V.M. Patel, M.S. Dabhi and R.V. Thakkar

Wheat Research Station, S. D. Agricultural University, Vijapur-384 570, Gujarat, India *Corresponding author E-mail: cragri2911@gmail.com (Date of Receiving-19-06-2025; Date of Acceptance-02-09-2025)

ABSTRACT

on Crop Standards, Notification and Release of Varieties, Ministry of Agriculture, Government of India vide notification No. S.O. 1560 (E) dated on 26th March, 2024 for commercial cultivation under timely sown, irrigated conditions of Central Zone (CZ) of the country. GW 547 is a high yielding wheat genotype which has shown significant yield superiority under timely sown irrigated conditions of Central zone over the checks GW 513 during 2021-22. Average yield of GW 547 during three years of testing was recorded to be 58.2 q/ha whereas check varieties GW 513 and GW 322 produced 56.9 and 55.6 q/ha grain yield respectively. It has a potential yield of 74.0 q/ha at vijapur location during 2022-23. It showed high levels of field resistance to black and brown rusts. GW 547 has good levels of protein content (12.6 %). It also showed desired quality traits like good grain appearance (6.9/10), sedimentation value (55.2 ml) and hectoliter weight (80.3 kg/hl). It has high levels of essential micronutrients like iron (~39.8 ppm) and zinc (~40.5 ppm) as compared to the all the check varieties GW 513 and GW 322. This variety has been found promising for timely sown, irrigation areas of CZ; and thus, it will contribute to increase wheat production and will improve the socio-economic

A high yielding bread wheat variety GW 547 has been released and notified by the Central Sub-Committee

Key words: GW 547, central zone, high yield potential, rust resistance, wheat

Introduction

status of farmers.

Cereals play a pivotal role to satisfy the global food demand of growing population, particularly in developing nations where cereal-based production system is the only predominant source of nutrition and calorie intake (Nikos and Jelle, 2012). Wheat (*Triticum aestivum* L.) is one of the principal cereal crops grown worldwide and one of the important staples of nearly 2.5 billion of world population. India is being blessed and enriched with a diverse agro-ecological condition, ensuring food and nutrition security to a majority of the Indian population (Ramadas *et al.*, 2019).

Wheat production in India's Central Zone (CZ) has seen improvements due to the introduction of new varieties and better agronomic practices. While the CZ faces challenges like a shorter, hotter winter and limited irrigation compared to the North Western Plains Zone (NWPZ), research and development efforts have led to significant

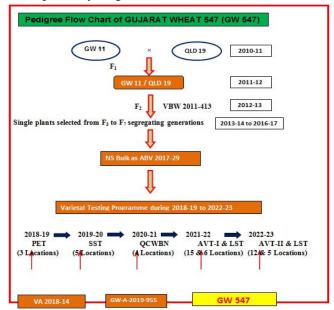
yield gains. These efforts include developing varieties better suited to the CZ's conditions and promoting practices like zero tillage and resource conservation technologies. Genetic improvement in wheat plays a crucial role in enhancing crop productivity and in meeting the current and future food security requirements. Breeders throughout the world including India have succeeded in achieving significant gain in productivity (Rajaram and van Ginkel, 1996).

After independence, India was net deficit in food production and had to import wheat for domestic consumption. During 1966–1967, India adopted new strategy which led the 'Green Revolution', especially in the production of wheat and rice. The All India Coordinated Wheat Improvement Project (AICWIP) was started in 1965 is one of the largest crop improvement network projects. In India, there are five mega wheat-growing environments, *i.e.* North-Western Plains Zone

1432 C.R. Patel *et al.*

Doutionlone	Voor of testing	Tasstians	Proposed variety	Check varieties		CD
Particulars	Year of testing	Locations	GW 547	GW 513	GW 322	(10 %)
	2020-21 (QCWBN)	4	59.4	-	51.7	5.9
Mean	2021-22 (AVT-IR-TS-TAS-CZ)	15	57.5	55.1	56.6	1.1
yield	2022-23 (AVT-IR-TS-TAS-CZ)	12	57.7	58.7	58.5	1.4
(Q/ha)	Mean	58.2	56.9	55.6	-	
	Weighted mean of GW 547 with resp	pective checks	-	57.6	58.2	
% Increase	2020-21 (QCWBN)		-	-	14.9	-
or decrease	2021-22 (AVT-IR-TS-TAS-CZ)		-	4.4	1.6	-
over the	2022-23 (AVT-IR-TS-TAS-CZ)		-	-1.7	-1.4	-
checks	Weighted Mean		-	1.2	4.7	-
Frequency	2021-22 (AVT-IR-TS-TAS-CZ)		8/15	3/15	8/15	-
in 1 st NS	2022-23 (AVT-IR-TS-TAS-CZ)		2/12	2/12	6/12	-
group	Total		10/27	5/27	14/27	-

(NWPZ), North-Eastern Plains Zone (NEPZ), Central Zone (CZ), Peninsular Zone (PZ) and Northern Hills Zone (NHZ). Under this project, several high-yielding wheat varieties have been developed which became extensively popular and adopted by the farming community. For instance, C 306, HD 2009, WL 711, UP 262, HUW 234, HD 2189, WH 147, Lok 1, HI 617 (Sujata), HD 2285, HD 2329, PBW 343, Raj 3765, PBW 502, HD 2733, HD 2967, HD 3086, DBW 17, PBW 550, GW 273, GW 322, GW 496, DBW 187 and WB 2 in bread wheat were developed and became the popular deliverables of the project. (Sharma *et al.*, 2014).


The Central Zone comprises Madhya Pradesh, Chhattisgarh, Gujarat, Rajasthan (Kota and Udaipur divisions) and Uttar Pradesh (Jhansi division). In the central zone of India, the primary food crops are wheat and rice. In CZ wheat is cultivated in around 6.84 million ha area and estimated production was 22.37 mt with productivity of 2978 kg/ha. CZ is the third largest wheat producing zone of India which occupies 23.15% of total area and accounts for 20.37% of the total production of wheat in the country. The CZ of wheat is known for premium quality bread wheat having typically hard lustrous grains with high gluten strength. Development and evaluation of disease resistant and biofortified wheat lines has contributed in successful implementation of breeding goals across wheat improvement programs in the country (Kumar et al., 2014, Yadav et al., 2017).

Material and Methods

Development of GW 547

The variety GW 547 was developed through pedigree method from the cross GW 11 / QLD 19 in the year 2010-11 at Wheat Research Station, S.D. Agricultural University, Vijapur. Single plant selection was made in the year 2011-12 and was advanced in further generations.

Rust disease was monitored in the segregating generations using susceptible varieties in the border lines which were also inoculated artificially. It was found suitable for timely sown condition promoted to preliminary evaluation trial at three locations during 2018-19. Further it was tested in small scale varietal trial in the year 2019-20 at five locations; simultaneously it was screened for black and brown rust in the IPPSN under artificial inoculations under AICRP approach. In 2020-21 the entry was promoted and evaluated in Quality Component Wheat Biofortification Nursery (QCWBN) at four locations. On the basis of yield and quality traits the genotype was promoted to AVT-IR-TS-CZ as GW 547 and was evaluated in 12 rows of six-meter length spaced at 20 cm with four replications in randomized complete block design at 15 and 12 locations during 2021-22 and 2022-23 respectively (Fig. 1).

Fig. 1: Flow chart of details of development of Bread wheat variety GW 547.

Table 2: Reaction to rust diseases in natural and artificial epiphytotic condition.

		PV			C	V		
Disease	Year	GW	547	GW 513		GW	322	
		HS	ACI	HS	ACI	HS	ACI	
	Leaf Rust							
Natural	2021-22	0	-	0	-	0	-	
condition	2022-23	0	-	0	-	0	-	
Artificial	2021-22	15MR	1.3	20MS	3.3	30S	14.4	
condition	2022-23	5MR	0.3	TMR	0.1	40S	11.1	
Highest Score & Mean ACI		15MR	0.8	20MS	1.7	40S	12.8	
		Ste	m Ru	st				
Natural	2021-22	0	-	0	-	0	-	
condition	2022-23	0	-	0	-	0	-	
Artificial	2021-22	10MR	1.9	10MR	1.5	20S	8.0	
condition	2022-23	20MR	2.1	10MS	3.8	20S	9.0	
Highest S	20MR	2.0	10MC	2.7	205	8.5		
& Mean	ZUIVIK	2.0	10MS	2.7	20S	0.5		
PV:Proposed variety; CV: Check varieties;								
HS: Highest score; ACI: Average coefficient of infection								

Results and Discussion

Yield superiority and variety descriptors

This variety was evaluated in Quality Component and Wheat Biofortification Nursery (QCWBN) at four locations during 2020-21. The yield performance of GW 547 (59.4 q/ha) in QCWBN which has shown significant yield superiority under timely sown irrigated conditions over the check GW 322 (51.7 q/ha) during 2020-21 (Table 1). Based upon its superiority over check the genotype along with other test entries and check varieties were evaluated for two years i.e. 2021-22 (AVT-IR-TS-CZ) and 2022-23 (AVT-IR-TS-CZ) under All India Coordinated Wheat Improvement Programe (AICWIP). Under Co-ordinated trials of AICWIP, GW 547 was evaluated at 27 locations during 2021-22 to 2022-23 out of which it occurred 10 times in the first non-significant group indicating its wider adaptability and stable yielding feature (Table 1). GW 547 was significantly high yielding bread wheat genotype (58.2 q/ha) compared to bread wheat check varieties GW 513 (56.9 q/ha) and GW 322 (55.6 q/ha) under timely sown irrigated conditions (ICAR-

Table 3: Gene postulation for rust resistance based on multipathotype testing (2021-22 & 2022-23).

Disease	Proposed variety		Check v	GW	
	GW 547		GW	322	
	21-22	22-23	21-22	22-23	22-23
Black Rust	<i>Sr</i> 2+ <i>R</i>	Sr30+*	Sr24+2+	_*	Sr11+2+
Brown Rust R $Lr13+*$		Lr24+R	Lr23+*	_*	

^{*} Different seed lot to that of previous cropping season,

-: Gene not postulated, R: resistant to all pathotypes

Table 4: Reaction to other diseases.

		l	PV	CV			
Disease	Year	GW	547	GW	GW 513		322
		Av	HS	Av	HS	Av	HS
Leaf	2021-22	57	89	67	89	-	-
Blight	2022-23	46	79	57	89	45	99
(dd)	Mean	52	89	62	89	45	99
Karnal	2021-22	4.5	15.9	9.7	31.0	-	-
Bunt	2022-23	12.5	48.5	9.1	30.9	15.5	64.4
(%)	Mean	8.5	48.5	9.4	31.0	15.5	64.4
Powdery	2021-22	4	7	5	9	-	-
Mildew	2022-23	4	7	4	9	3	6
(0-9)	Mean	4	7	5	9	3	6
Flag	2021-22	4.3	9.6	5.0	8.5	-	-
Smut	2022-23	4.6	8.5	4.5	8.6	4.3	10.8
(%)	Mean	4.5	9.6	4.8	8.6	4.3	10.8
FHB	2021-22	-	4	-	5	-	-
	2022-23	-	4	-	5	-	4
(0-5)	Mean	-	4	-	5	-	4
Foot	2021-22	-	15.0	-	8.3	-	-
Rot	2022-23	-	0.0	-	35.0	-	38.89
(%)	Mean	-	15.0	-	35.0	-	38.9
Loose	2021-22	-	-	10.1	30.0	-	-
Smut	2022-23	22.4	75.0	36.4	85.0	-	-
(%)	Mean	22.4	75.0	23.3	85.0	-	-
PV: Proposed variety; CV: Check varieties							

IIWBR, 2023a, ICAR-IIWBR, 2022a, ICAR-IIWBR, 2021a). It has significant yield advantage of 1.2 % and 4.7 % over the checks GW 513 and GW 322, respectively (Table 1). It has a potential yield of 74.0 q/ha compared to bread wheat check varieties GW 513 (75.1 q/ha) and GW 322 (74.0 q/ha). It also showed wider yield stability across the zone and yielded > 50.0 q/ha at 23 out of 27 locations over two years of testing.

HS: Highest score; **AV:** Average score

Resistance to major diseases and pests:

Evaluation of GW 547 in various pathological nurseries showed that it has multiple disease resistance *viz.*, resistance to two rusts and other diseases. Under artificial epiphytotic conditions, GW 547 showed superior level of leaf rust resistance (ACI: Max. 1.3; Mean 0.8) as compared to check variety GW 513 (ACI: Max. 3.3; Mean 1.7) and GW 322 (ACI: Max. 14.4; Mean 12.8). It also showed high levels of resistance to stem rust (ACI: Max 2.1; Mean 2.0) as compared to check varieties GW 513 (ACI: Max 3.8; Mean 2.7) and GW 322 (ACI: Max. 9.0; Mean 8.5) (Table 2). Seedling tests were conducted for two years at ICAR-IIWBR, Shimla for testing its resistance against bread wheat virulent leaf rust pathotypes *viz.*, 77-5, 77-9 and 104-2 groups and stem rust pathotypes *viz.*, 11 and 40A groups. GW 547 is

1434 C.R. Patel *et al.*

Table 5: Reaction to insect pests.

Insect		PV	-	CA	7		
pests	Year	GW	547	GW:	513	GW	322
		Av	HS	Av	HS	Av	HS
	2021-22	10.43	-	9.65	-	-	-
SFI	2022-23	11.82	-	13.21	-	12.37	-
	Mean	11.13	-	11.43	-	12.37	-
	2021-22	14.00	-	8.30	-	-	-
BWM	2022-23	8.67	-	14.00	-	10.67	-
	Mean	11.34	-	11.15	-	10.67	-
	2021-22	5.0	5	5.0	5	-	-
WFA	2022-23	4.0	5	3.5	4	3.5	4
	Mean	4.5	5	4.3	5	3.5	4
	2021-22	4.0	-	4.0	-	-	-
RA	2022-23	4.0	-	4.0	-	4.0	-
	Mean	4.0	-	4.0	-	4.0	-

SFI: Shoot fly incidence (%); BWM: Brown wheat mite (no. of mites/ 10cm² area); WFA: Wheat foliar aphid (Score 1-5); RA: Root aphid(Score 1-5)

PV: Proposed variety; CV: Check varieties

HS: Highest score; AV: Average score

resistant to important and prevalent pathotypes of brown and black rusts (ICAR-IIWBR, 2022b; ICAR-IIWBR, 2023b). Based on comparison of seedling reactions, "GW 547" is postulated to have stem rust resistance gene Sr30+ and leaf rust resistance gene Lr13+ (Table 3). In addition, it showed good levels of resistance (8.5 %) against Karnal bunt as compared with check varieties, whereas, for leaf blight it showed resistance reaction compared to the check varieties (Table 4). For shoot fly incidence (%), GW 547 (11.13) showed better tolerance than check variety GW 513 (11.43) and GW 322 (12.37) (Table 5).

Quality attributes

High grain appearance score (6.9/10) and test weight (80.3 kg/hl) for GW 547 compared to other check varieties indicate that grain was bold, lustrous and non-shriveled. GW 547 showed high protein content (12.6%), protein quality (Glu score of 8/10) for high molecular weight subunits and grain hardness index (78) (Table 6). End product analysis conducted at ICAR IIWBR lab indicated that GW 547 is suitable for *chapatti* making (8.2/10) along with sedimentation value of 55.2 ml, wet gluten (32.8%), dry gluten (10.6%) and gluten Index (60/100), whereas phenol score was 6.9/10 recorded in this variety. It recorded highest score for bread loaf volume (529 cc) and bread quality score (6.5/10) among checks (ICAR-IIWBR, 2023c). Hence, may be considered as a good quality bread wheat genotype. It has good levels of essential micronutrients like iron (39.8 ppm) and zinc content (40.5 ppm) making it rich in nutritional qualities (Table 6).

Table 6: Performance of GW 547 along with checks for quality traits under coordinated trials.

PV CV						
Quality characteristics	GW	GW	GW			
	547	513	322			
Grain Characteri	istics					
Protein (%)	12.6	11.0	10.7			
Grain appearance score	6.9	7.2	6.7			
(Max score 10)		,	0.7			
Hectoliter weight (kg/hl)	80.3	82.4	80.4			
Sedimentation value (ml)	55.2	42.1	41.4			
Grain hardness index	78	80	85			
High molecular Weight Glutenin		s (HMW	/-GS)			
GLu-D1	2+12	5+10	2+12			
GLu-A1	2*	N	2*			
GLu-B1	7+8	17+18	7+8			
Score	8	8	8			
Chapatti, bread and bise	Ů		8			
Chapatti, bread and bise Wet Gluten (%)	Ů		28.5			
Chapatti, bread and bise Wet Gluten (%) Dry Gluten (%)	cuit qua	lity				
Chapatti, bread and bisco Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100)	cuit qua	30.9 9.9 61	28.5			
Chapatti, bread and biso Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc)	32.8 10.6	30.9 9.9	28.5 9.3 60 468			
Chapatti, bread and bise Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10)	32.8 10.6 60	30.9 9.9 61	28.5 9.3 60			
Chapatti, bread and biso Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10) Chapatti quality score (max 10)	32.8 10.6 60 529	30.9 9.9 61 415	28.5 9.3 60 468			
Chapatti, bread and bisc Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10) Chapatti quality score (max 10) Biscuit quality (Spread Factor)	32.8 10.6 60 529 6.5 8.2 8.3	30.9 9.9 61 415 4.1 7.9 8.3	28.5 9.3 60 468 5.5 7.8 8.7			
Chapatti, bread and bise Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10) Chapatti quality score (max 10) Biscuit quality (Spread Factor) Phenol Test (Max. Score 10)	32.8 10.6 60 529 6.5 8.2 8.3 6.9	30.9 9.9 61 415 4.1 7.9	28.5 9.3 60 468 5.5 7.8			
Chapatti, bread and bise Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10) Chapatti quality score (max 10) Biscuit quality (Spread Factor) Phenol Test (Max. Score 10) Nutritional qual	32.8 10.6 60 529 6.5 8.2 8.3 6.9	30.9 9.9 61 41.5 4.1 7.9 8.3 2.3	28.5 9.3 60 468 5.5 7.8 8.7			
Chapatti, bread and bise Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10) Chapatti quality score (max 10) Biscuit quality (Spread Factor) Phenol Test (Max. Score 10) Nutritional qual Fe(ppm)	32.8 10.6 60 529 6.5 8.2 8.3 6.9 ity 39.8	30.9 9.9 61 415 4.1 7.9 8.3 2.3	28.5 9.3 60 468 5.5 7.8 8.7 5.3			
Chapatti, bread and bise Wet Gluten (%) Dry Gluten (%) Gluten Index (max 100) Bread quality loaf volume (cc) Bread quality score (max 10) Chapatti quality score (max 10) Biscuit quality (Spread Factor) Phenol Test (Max. Score 10) Nutritional qual	32.8 10.6 60 529 6.5 8.2 8.3 6.9	30.9 9.9 61 41.5 4.1 7.9 8.3 2.3	28.5 9.3 60 468 5.5 7.8 8.7 5.3			

Performance of GW 547 for agro-morphological traits

The new variety GW 547 recorded mean days to heading and maturity 70 and 121 days, respectively and high thousand grain weight (47g). GW 547 exhibited an average plant height of 96 cm in the co-ordinated experiments. Dark green foliage colour, medium brush hair length, oblong grain shape and absence of outer glume

Table 7: Performance of GW 547 for agro-morphological and phonological traits in CZ under coordinated testing.

Traits	GW 547	GW 513	GW 322	
Days to heading	70	64	70	
Days to maturity	121	118	120	
Plant height (cm)	96	93	89	
1000 grain	47	47	43	
weight (g)	4/	4/	43	
Foliage colour	Dark green	Pale green	Dark green	
Grain shape	Oblong	Oblong	Ovate	
Brush hair length	Medium	Medium	Short	
Outer glume pubescence	Absent	Present	Absent	

pubescence are the distinct traits of GW 547 under DUS criteria (Table 7).

Notification

GW 547 was notified by the Central Sub-Committee on Crop Standards, Notification and Release of Varieties, Ministry of Agriculture, Government of India vide notification No. S.O. 1560 (E) dated on 26th March, 2024 for commercial cultivation under timely sown, irrigated conditions of Central Zone (CZ) of the country which covers Madhya Pradesh, Chhattisgarh, Gujarat, Rajasthan (Kota and Udaipur divisions) and Uttar Pradesh (Jhansi division).

Conclusion

GW 547 is a high yielding, disease resistant and having good nutritional quality traits bread wheat variety suitable for timely sown and irrigation areas of central wheat growing zone and thus, it will contribute to increase wheat production and will improve the socio-economic status of farmers.

Acknowledgement

This article is based on the Central Varietal release committee (CVRC) proposal and the authors are highly thankful to The Director, IIWBR, PIs of ICAR-IIWBR and co-operators of AICWIP for their contribution.

References

- ICAR-IIWBR (2021a). Progress Report of AICRP on Wheat and Barley 2020-21, Crop Improvement. eds: Gyanendra Singh, BS Tyagi, Arun Gupta, SK Singh, Satish Kumar, Hanif Khan, Vikas Gupta, Gopalareddy K, AK Sharma, CN Mishra, Charan Singh, Mamrutha HM, K Venkatesh, UR Kamble, Ratan Tiwari, Ajay Verma and Gyanendra Pratap Singh. ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India. 227.
- ICAR-IIWBR (2022a). Progress Report of AICRP on Wheat and Barley 2022-23, Crop Improvement. Eds: BS Tyagi, Arun Gupta, Ratan Tiwari, Satish Kumar, Vikas Gupta, AK Sharma, Hanif Khan, CN Mishra, Vishnu Kumar, Charan Singh, UR Kamble, Mamrutha HM, Sonia Sheoran, OP Ahlawat, Ajay Verma, GP Singh and Gyanendra Singh. ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India. 205.
- ICAR-IIWBR (2022b). Progress Report of AICRP on Wheat and Barley 2022-23, Crop Protection Eds: Poonam Jasrotia, Sudheer Kumar, Prem Lal Kashyap, Ravindra Kumar and Gyanendra Singh. ICAR- Indian Institute of Wheat and

- Barley Research, Karnal, Haryana, India. 189.
- ICAR-IIWBR (2023a). Progress Report of AICRP on Wheat and Barley 2023-24, Crop Improvement. Eds: BS Tyagi, Arun Gupta, Sindhu Sareen, AK Sharma, Hanif Khan, Satish Kumar, CN Mishra, Charan Singh, Vikas Gupta, UR Kamble, Rakesh K Bairwa, Mamrutha HM, Sonia Sheoran, Ajay Verma, OP Ahlawat, Gyanendra Singh, Ratan Tiwari. ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India. 217.
- ICAR-IIWBR (2023b). Progress Report of AICRP on Wheat and Barley 2023-24, Crop Protection Eds: Pradeep Sharma, Poonam Jasrotia, Prem Lal Kashyap, Ravindra Kumar and Ratan Tiwari. ICARIndian Institute of Wheat and Barley Research, Karnal, Haryana, India. 316.
- ICAR-IIWBR (2023c). Progress Report of All India Coordinated Research Project on Wheat and Barley 2023-24, Wheat Quality. Eds: Sewa Ram, Sunil Kumar, O.P. Gupta, Anuj Kumar, Vanita Pandey, Gyanendra Singh and Ratan Tiwari. ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India. 159.
- Kumar, S., Bala R., Mishra C.N., Gupta V., Singh Y.P., Singh S., Bains N.S., Saharan M.S., Tiwari V. and Sharma I. (2014). Yield evaluation of Karnal bunt Near Isogenic Lines (NILs) developed in the background of wheat variety PBW 343. *Crop Improvement*, 41(1), 21-25.
- Nikos, A. and Jelle B. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12-03. Rome: Food and Agriculture.
- Rajaram, S. and VanGinkel M. (1996). Yield potential debate: germplasm vs. methodology, or both. *In*: Reynolds, M.P., Rajaram, S., McNab, A. (eds), *Increasing Yield Potential in Wheat: Breaking the Barriers*. Workshop Proc. CD. Obregon, Mexico, 28-30 Mar. 1996. CIMMYT. Mexico DF, Mexico.
- Ramadas, S., Kumar T.M.K. and Singh G.P. (2019). Wheat Production in India: Trends and Prospects. Intechopen. 8634.
- Sharma, I., Sendhil R. and Chatrath R. (2014). Deciphering the role of wheat production and protection technologies for food and nutrition security. In: Souvenir of 53rd All India Wheat & Barley Research Workers' meet and International Seminar on Enhancing Wheat & Barley Production with special emphasis on Nutritional Security; Jabalpur: Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV).
- Yadav, V., Mishra D.N., Chauhan R.S., Tomar P. and Singh R. (2017). Performance of newly released wheat (*Triticum aestivum* L.) varieties on different sowing dates under NWPZ of UP. *Journal of Pharmacognosy and Phytochemistry* 1, 720-722.